Jumat, 06 Februari 2015

Deepwater pipeline pre-commissioning and inspection


Innovation enhances deepwater pipeline pre-commissioning and inspectionhttp://www.offshore-mag.com/etc/designs/default/0.gif
Mark J. Slaughter
Weatherford

Deepwater pipeline pre-commissioning and in-line inspections are logistical and technical challenges, and vessel time is typically a major expense. The Tamar gas field project in the Mediterranean Sea met these challenges using specialized subsea commissioning technology to mechanically displace and introduce pipeline fluids, and ultrasonic in-line inspection tools to assure pipeline integrity.
The long-distance, deepwater pipeline project for Noble Energy involved a subsea gas production and transportation system connecting the Tamar gas field to an offshore receiving and processing platform linked to the existing Mari-B platform. The system produces gas from five high-flow-rate subsea wells through separate infield flowlines to a subsea manifold. Dual subsea pipelines transport production from the subsea manifold approximately 149 km (92.5 mi) to the Tamar offshore receiving and processing platform. The processed gas goes to the existing Ashdod Onshore Terminal (AOT) for sales into the Israel Natural Gas Line (INGL).
Weatherford's Pipeline and Specialty Services (P&SS) group was contracted to provide the pipeline pre-commissioning and inspection, including tieback pipelines, monoethylene glycol (MEG) pipelines, infield flowlines, gas and condensate injection pipelines, Tamar sales gas export pipeline, and utility pipelines. Integration of these services through a single contractor was one key to reducing logistical and scheduling constraints for overall project success.
Infield flowline operations
Challenges and solutions engaged in the project revolved around subsea flooding, testing, and MEG injection; dewatering, MEG conditioning, and nitrogen purging; and ultrasonic wall measurement base line inspection.
A key aspect of the pre-commissioning involved flooding, cleaning, gauging, and hydrotesting the 5 x 10-in. deepwater (1,600 m to 1,800 m/5,248 ft to 5,904 ft) infield flowlines of 4-km to 6-km (2.5-mi to 3.7-mi) lengths. These operations were performed from the seabed using Weatherford's Denizen subsea pre-commissioning system.
The Tamar gas field presented many logistical and technical challenges to pre-commissioning and inspection.

Flowline operations were independent of the tieback lines and jumper installation. Schedule flexibility increased as a result, and the remote subsea operations avoided the use of a large, vessel-based pumping spread or deepwater downline. Subsea pumps for the flood and hydrotest operations were driven by high ambient hydrostatic pressure during the pipeline free-flood phase and by ROV hydraulic power.
The Denizen pigging pump launched the dewatering pig train with slugs of MEG. A custom, high-volume MEG skid was deployed subsea and connected to the flooding skid to avoid the cost of downline intervention to inject the MEG.
Pre-launching the pigs allowed dewatering of the 10-in. infield lines via a jumper from the 16-in. tieback lines. As a result, all dewatering nitrogen injection was performed from the shallow end of the tieback lines.
Another novel subsea operation used multiple remote subsea data-logging skid packages during hydro-testing. Typically, the ROV and pumping skid hold station at the end of the pipeline for the full 12- or 24-hr pressure test. This was unworkable with five pipelines requiring testing and hold periods.
The solution was to deploy multiple independent hydro-test logging skids. The system's pumping skid has a built-in hydro-test data logging system that displays pipeline pressure, temperature, and pump flow rate. A high-pressure triplex pump, powered by the ROV's hydraulic system, elevated pipeline pressure by injecting chemically treated and filtered seawater.
The logging skids were stabbed into the pipeline and the pressure test was conducted through them. Instead of remaining on station during the hold period, the pump skid was freed to pressurize the next pipeline.
Twin 16-in. pipelines
Flooding, cleaning, and gauging the twin 147-km (91.3-mi) x 16-in. pipelines was done from a vessel at the shallow end of the 240-m to 1,700-m (782-ft to 5,576-ft) water depth run. In-line inspection surveys were conducted during flooding. A caliper tool was pumped to verify minimum bore followed by a UTMW tool to acquire the wall thickness baseline survey.
The inspection was followed by dewatering operations for all 5 km (3 mi) of the Tamar infield and tieback pipelines. Pipeline diameter and water depth required a pressure range of 170 to 235 bar (3,465 psi/17 MPa to 3,408 psi/23.5 MPa), which required specialized compression equipment. Weatherford's Temporary Air Compression Station (TACS) fleet provided sufficient compression power to complete the dewatering, MEG conditioning, and nitrogen purging in a single pigging operation.
The procedure eliminated additional post-dewatering pigging/purging, and left the pipelines ready to accept hydrocarbons. MEG batches between pigs in the dewatering train conditioned the post-dewatering residual water and prevented the formation of hydrates. Additional MEG was included for pipe wall desalination.
Denizen pumping skid with ROV reduced vessel time for subsea operations.

A novel approach was also used to dewater the 10-in. infield lines via the 16-in. tieback lines without using a downline or a second vessel. The tieback lines were packed to a higher gas pressure (232 bar/3,365 psi/23.2 MPa) than required for dewatering (170 bar). Later, the nitrogen in from these lines was directed through a manifold and set of jumpers to drive the pig trains in the 10-in. infield lines. Because the pig trains were launched earlier, no deepwater downline was required for MEG injection.
Dewatering efficiency was achieved by regulating pig speed using a stab-mounted orifice plate installed at the discharge end of each 10-in. infield line. Days of vessel time were saved by dewatering all five infield lines using the pressurized nitrogen contained in the long tieback lines.
UTWM line inspection
The cost of deepwater repair makes inspection accuracy critical to pipeline integrity assessment. An ultrasonic wall measurement (UTWM) baseline survey was performed on the 16-in. tieback using Weatherford's latest ultrasonic in-line inspection (ILI) tools.
Ultrasound non-destructive testing has been used for in-line inspection since the 1980s. The technology measures wall thickness based on ultrasound compression waves directed into the pipe wall. Ultrasonic transducers positioned 90° to the pipe wall use an impulse-echo mode to transmit an acoustic wave and to receive return echoes. The echoes represent the locations of the internal and external pipe wall, and metallurgical anomalies such as laminations. A UTWM baseline inspection identifies and classifies non-injurious signals such as mid-wall laminations and other mill-related anomalies.
Baseline corrosion survey
Accurate anomaly classification and sizing is valuable when comparing the baseline to future inspection data. Accuracy also enhances future integrity efforts such as engineering assessments and growth rates. It is important for deepwater subsea lines where normal onshore non-destructive examination validation practices are cost prohibitive. A higher level of accuracy is also important when assessing anomalies, assigning risk, and prioritizing maintenance and expenses.
Advanced ultrasonic inspection tool was used to examine pipeline integrity.

Compared to magnetic flux leakage (MFL) tools, ultrasonic technology results in better sizing accuracy in determining wall loss and pipe wall thickness. This is because ultrasonic pulse echo physics are a more direct measurement of wall loss. In some cases, however, MFL is a better solution because it can be more forgiving of dirt, debris, rough internal pipe surfaces, and waxy liquids. This necessitates a comprehensive pre-inspection assessment prior to selection of the appropriate technology.
Accurate measurement of wall thickness has a direct influence in calculating the failure pressure of a corrosion feature. Typical MFL tools do not measure wall thickness but infer it from API pipe specification, pipeline construction data, and/or estimated variations in the magnetic field. This provides a relative assessment due to pipeline data inaccuracies or difficultly obtaining data because of asset ownership transfers, unavailable data, or unrecorded pipeline reroutes and modifications.
In addition, inferred measurements do not consider wall thickness tolerances from the pipe mill. As a result, an MFL corrosion wall loss depth measurement depends on a relative measurement of the pipe wall. This decreases the sizing accuracy beyond the normal ILI tool sizing tolerance because, in addition to tolerances associated with the ILI tool anomaly sizing, there are also tolerances associated with the actual pipe spool wall thickness from the mill.
Acceptable tolerances from the mill can be as high as ± 10% for pipe wall thicknesses between 5 mm (0.2 in.) and 15 mm (0.6 in.) in welded pipeline. Tolerances for pipe walls greater than or equal to 15 mm are ± 15% in welded pipe. These pipe mill tolerances and the high corrosion-anomaly sizing tolerances of an MFL tool mean the calculated failure pressure from an ILI survey can be significantly over or under as the result of sizing inaccuracies caused by quantifying depths as a percentage of the assumed wall thickness.
More accurate corrosion sizing also provides better data to feed an assessment standard such as B31G, modified B31G, or RSTRENG effective area assessment, the preferred method for determining the remaining strength of the pipe. Of the three, RSTRENG effective area assessment is the most accurate, based on actual versus predicted burst pressure tests.
Experience demonstrates the occurrence of echo loss due to adverse pipeline conditions. New sensor technology in current UTWM devices helps enhance detection and accuracy. API 11636 engineering tests and field data analysis show improved sensitivity and reduced signal degradation, which is critical to a successful deepwater subsea baseline survey. The same sensor technology is used for in-line crack inspection with accurate sizing results that can be used for integrity assessments methodologies such as API 5797.
16-in. tieback inspection
In the Mediterranean operation, tight scheduling for the subsea launch presented a challenge for the 16-in. UTWM ILI inspections. Normally, there would have been sufficient battery life for the inspection tool run. However, in this case a delayed activation was needed because of the time needed for a subsea launch.
The ILI tool first had to be inserted into the pipeline launcher receiver (PLR) onboard the vessel. A vessel crane moved the launcher with the ILI tool to the pipeline end manifold (PLEM). A hydraulic lock secured the pipeline end termination (PLET) to the pipeline, and an ROV was used to turn the subsea valves and launch the pig.
The time-consuming process increased the risk of delays that could drain battery life and cause a failed run. As a result, a two-hour window was included for unforeseen delays. This safety factor led to programing a 12-hour delayed activation from the time the tool was inserted into the PLR onboard the vessel.
12/12/2013

Spiral Pipe for Offshore Application


Standard
GIA announces the release of a comprehensive global report on the Spiral Welded Pipes and Tubes markets. Global market for Spiral Welded Pipes and Tubes is projected to reach 24.6 million tons by 2018, driven by economic recovery, level of activity in the energy sector, and intensifying pipeline construction activity.
Spiral welded pipes market, though encountering overcapacity conditions particularly in North America, is expected to witness steady growth in the upcoming years driven by the implementation of new pipeline projects. Investments in oil and gas exploration and production, which are influenced by prevailing crude oil & gas prices, have a considerable impact on the demand for spiral welded pipes and tubes. Resurgent world economy and consequent increase in the demand for industrial natural gas is expected to drive up momentum of the spiral welded pipes market.
Global demand for spiral welded pipes, which are primarily used in the transportation of oil and gas and in water transportation projects, is closely linked to the investments in the energy sector. The energy sector makes use of spiral welded pipes with diameters of up to 60” and up to 80 feet in length. Another factor that is expected to fuel demand for spiral pipes and tubes is new pipeline construction activity due to the shift of population from traditional centers that would necessitate development of infrastructure for delivering oil and natural gas to the new locations. Demand for spiral welded pipes is also expected from the replacement market, as most of the existing pipeline infrastructure, particularly in developed regions, has reached their end of useful life. Structural applications of spiral welded pipes are also gaining momentum, specifically with additional activity occurring in port, offshore loading and infrastructure improvement sectors.
As stated by the new market research report on Spiral Welded Pipes and Tubes, Asia-Pacific represents the largest market worldwide, driven primarily by increased use in transporting natural gas. Besides Asia-Pacific, Latin America ranks among the fastest growing regional markets with compounded annual growth rate ranging between 7.5% and 9.0% over the review period. North American market, on the other hand, is encountering testing times owing to weak demand and overcapacity conditions. Oversupply is the major concern for spiral welded pipes market particularly with regard to large diameter double submerged arc welded or DSAW line pipes, which finds use in transmitting oil, natural gas liquids, and natural gas to consumers from drilling locations.
Despite the prevailing conditions, potential opportunities are expected primarily from the implementation of new pipeline projects in the upcoming years, resurgent growth of the US economy, and increased demand from natural gas exploration operations. Also, overcapacity conditions are expected to fade away in the coming years, as several megaprojects are set to be taken up across the world, particularly in regions such as Southeast Asia, Australia, Middle East, Africa, and West Asia.
Replacement of aging infrastructure offers huge potential for pipe manufacturers. The need to replace old pipelines is particular high in the US and Russia, where pipeline networks were mostly installed during the 60s and 70s. With the average lifespan of oil and gas transportation pipes ranging between 25 and 30 years, opportunities in the replacement market are huge, particularly for HSAW pipes. In the US, replacement demand holds enormous potential as a result of the recent enactment of the legislation that necessitates more inspections to be carried out, which could increase the likelihood of pipeline replacements. The Act is likely to play a critical role in enabling manufacturers of large diameter line pipes to survive the tough economic and overcapacity conditions.
Major players profiled in the report include American SpiralWeld Pipe Company LLC, ArcelorMittal SA, Borusan Mannesmann Boru Sanayi ve Ticaret A.S., Europipe GmbH, EVRAZ North America, JFE Steel Corporation, Jindal SAW Ltd., Man Industries Ltd., National Pipe Company Ltd., Nippon Steel & Sumitomo Metal Corporation, PSL Limited, Shengli Oil & Gas Pipe Holdings Limited, Stupp Corporation, Volzhsky Pipe Plant, UMW Group, and Welspun Corp Ltd.
The research report titled “Spiral Welded Pipes and Tubes: A Global Strategic Business Report” announced by Global Industry Analysts Inc., provides a comprehensive review of market trends, issues, drivers, company profiles, mergers, acquisitions and other strategic industry activities. The report provides market estimates and projections for all major geographic markets including the US, Canada, Japan, Europe (France, Germany, Italy, UK, Spain, Russia and Rest of Europe), Asia-Pacific (China and Rest of Asia-Pacific), Middle East, and Latin America.
For more details about this comprehensive market research report, please visit –

About Global Industry Analysts, Inc.
Global Industry Analysts, Inc., (GIA) is a leading publisher of off-the-shelf market research. Founded in 1987, the company currently employs over 800 people worldwide. Annually, GIA publishes more than 1300 full-scale research reports and analyzes 40,000+ market and technology trends while monitoring more than 126,000 Companies worldwide. Serving over 9500 clients in 27 countries, GIA is recognized today, as one of the world’s largest and reputed market research firms.

Source :

Horizontal Directional Drilling


DIRECTIONAL DRILLING: Horizontal-departure-to-TVD ratio decline continues in US Gulf

http://www.offshore-mag.com/etc/designs/default/0.gifDrilling trends in the 1990s, as presented in the April 2000 issue of Offshore, indicated a majority of extended reach (ERD) wells had horizontal departures in the range of 10,000-15,000 ft. The second and third highest number of wells were in the 5,000-10,000 ft and 15,000-20,000 ft ranges, respectively.
These Gulf of Mexico trends were pushed up by the 1997 Deep Water Royalty Relief Act, which encouraged deepwater drilling by designating geographic areas and allowing deepwater leaseholders to apply for royalty suspensions in these areas. The total number of directional wells drilled in 1998 was 1,116, out of a total of 1,718 wells drilled. Total well counts for 1999 and 2000 are 1,944 for 1999 and 2,072 for 2000, however total directional well numbers are not available yet.

Looking at horizontal departure (Dep) and true vertical depth (TVD) of wells drilled through the mid-1990s, a general "shallowing" trend was evident. The ratio of Dep and TVD increased over this same time interval. This increase in the Dep/TVD ratio was due to a continuing increase efficiency of directional steering systems in horizontal and multi-lateral drilling applications. However, if a linear progression of future activity into deeper waters is assumed, a downward trend should develop off to the right of the graph. A few shallow water wells in the future will continue to be drilled, extending horizontal wellbores and pushing the Dep/TVD ratio greater than five. Some experts expect the majority of ERD wells in the early 21st Century will be drilled with ratios less than two.
The industry is pursuing a number of offshore extended reach projects to be drilled. Conven-tional steerable drilling assemblies will be the dominant drilling technique of choice. These conventional assemblies are limiting the drilling process, instead of contributing to it. However, rotary steerable technologies are emerging as a solution for this problem, extending reach capability even further.

Maximum closure

Horizontal and extended reach wells drilled in the gulf are pushing maximum closure distances to even greater lengths. The US Minerals Management Service maintains a two-year grace period for operators before releasing directional well information. These closure distances versus wells are through 1998, plus early released data of a small number of wells completed during 1999 and 2000. Operators drilling wells from 1998-2000 with the greatest maximum closure distances are listed in the table.
An interesting anomaly in maximum inclination can be seen in the 85-100 degree range. The downward trend in the number of wells with increasing maximum-well-inclination reversed itself and increased slightly over this inclination range. Also, operators completing wells from 1998-2000 with a maximum inclination angle of 85 degrees or better are listed in the table.

02/01/2001

Pig Launchers/ Receivers


Pig Launchers/ Receivers
Jamison Products Pig Launcher/ Receivers offered are a custom engineered design products that meets customer, environmental and industry standards. The Pig Launcher/ Receiver is built for ease of operation and longevity of service. With a multiple of option available, Jamison will supply the ultimate design that readily meets your technical and commercial requirements.

What is a Pig Launcher/Receiver?
Pigging in the maintenance of pipelines refers to the practice of using pipeline inspection gauges or 'pigs' to perform various operations on a pipeline without stopping the flow of the product in the pipeline. Pigs get their name from the squealing sound they make while traveling through a pipeline. These operations include but are not limited to cleaning and inspection of the pipeline. This is accomplished by inserting the pig into a Pig Launcher - a funnel shaped Y section in the pipeline. The launcher is then closed and the pressure of the product in the pipeline is used to push it along down the pipe until it reaches the receiving trap - the 'pig catcher'.
If the pipeline contains butterfly valves, the pipeline cannot be pigged. Ball valves cause no problems because the inside diameter of the ball can be specified to the same as that of the pipe.
Pigging has been used for many years to clean larger diameter pipelines in the oil industry. Today, however, the use of smaller diameter pigging systems is now increasing in many continuous and batch process plants as plant operators search for increased efficiencies.
Pigging can be used for almost any section of the transfer process between, for example, blending, storage or filling systems. Pigging systems are already installed in industries handling products as diverse as lubricating oils, paints, chemicals, toiletries, and foodstuffs.
Pigs are used in lube oil or painting blending: they are used to clean the pipes to avoid cross-contamination, and to empty the pipes into the product tanks (or sometimes to send a component back to its tank). Usually pigging is done at the beginning and at the end of each batch, but sometimes it is done in the midst of a batch, e.g. when producing a premix that will be used as an intermediate component.
Pigs are also used in oil and gas pipelines: they are used to clean the pipes but also there are "smart pigs" used to measure things like pipe thickness along the pipeline. They usually do not interrupt production, though some product can be lost when the pig is extracted. They can also be used to separate different products in a multi-product pipeline.

Why use a Pig Launcher/ Receiver?
A major advantage of piggable systems is the potential resulting product savings. At the end of each product transfer, it is possible to clear out the entire line contents with the pig, either forwards towards the receipt point, or backwards to the source tank. There is no requirement for extensive line flushing.
Without the need for line flushing, pigging offers the additional advantage of a much more rapid and reliable product changeover. Product sampling at the receipt point becomes faster because the interface between products is very clear, and the old method of checking at intervals, until the product is on-specification, is considerably shortened.
2/6/2015

Common Types of Pipeline Flange Faces


Common Types of Pipeline Flange Faces
Flanges provide the necessary connections to link pipelines. Faces are the mating surface of a flange. Flange faces have to be smooth enough to ensure a tight, leak-free seal for bolted flanges. For the purpose of this article, we will be focusing on five common types of flange faces:
1. Raised Face (RF)
2. Flat Face (FF)
3. Ring-Type Joint (RTJ)
4. Male-and-Female (M&F)
5. Tongue-and-Groove (T&G)
Raised Face (RF)
The Raised Face type is the most applied flange type, and is easily to identify. It is called raised face because the gasket is raised 1/16" to 1/4" above the bolt circle face. This face type allows the use of a wide combination of gasket designs, including flat ring sheet types and metallic composites such as spiral wound and double jacketed types.
The purpose of a RF flange is to concentrate more pressure on a smaller gasket area and thereby increase the pressure containment capability of the joint.
 







Flat Face (FF)
The flat face (full face) flange has a gasket surface in the same plane as the bolting circle face. Applications using flat face flanges are frequently those in which the mating flange or flanged fitting is made from a casting.
Flat face flanges are never to be bolted to a raised face flange. When connecting flat face cast iron flanges to carbon steel flanges, the raised face on the carbon steel flange must be removed, and that a full face gasket is required. Flat face flanges are used on pump facings or on fiberglass flanges where the torque of compressing the gasket will damage the flange body and on cast iron flanges sometimes found on mechanical equipment that can cause complications due to the brittle nature of cast iron. Forged steel flat face flanges are often found 150# and 300# ratings.
The Flat Face flange has a gasket surface in the same plane as the bolting circle face. Applications using flat face flanges are frequently those in which the mating flange or flanged fitting is made from a casting.
 

Ring-Type Joint (RTJ)
The Ring Type Joint flanges are typically used in high pressure (Class 600 and higher rating) and high temperature services above 800°F (427°C).
RTJ flanges have grooves cut into their faces. An RTJ flange may have a raised face with a ring groove machined into it. This raised face does not serve as any part of the sealing means. For RTJ flanges that seal with ring gaskets, the raised faces of the connected and tightened flanges may contact each other. In this case the compressed gasket will not bear additional load beyond the bolt tension, vibration and movement cannot further crush the gasket and lessen the connecting tension.
Ring-type joints (RTJ) are considered to be the most efficient flanges for use in pipeline design. Rather than using a gasket between connecting flanges, RTJ have a deep groove in a ring shared around the face. 
Ring type gaskets must be used on this type of flange. Ring Type Joint gaskets are metallic sealing rings, suitable for high-pressure and high-temperature applications. 

Tongue-and-Groove (T&G)
With this type the flanges must be matched. One flange face has a raised ring (Tongue) machined onto the flange face while the mating flange has a matching depression (Groove) machined into it′s face. These facings are commonly found on pump covers and valve bonnets.
Tongue-and-groove facings are standardized in both large and small types. They differ from male-and-female in that the inside diameters of the tongue-and-groove do not extend into the flange base, thus retaining the gasket on its inner and outer diameter. 
Tongue-and-groove joints also have an advantage in that they are self-aligning and act as a reservoir for the adhesive. The scarf joint keeps the axis of loading in line with the joint and does not require a major machining operation.


Male-and-Female (M&F)
This type of flanges also must be matched. One flange face has an area that extends beyond the normal flange face (Male). The other flange or mating flange has a matching depression (Female) machined into it′s face. Custom male and female facings are commonly found on the heat exchanger shell to channel and cover flanges. The female face and the male face are smooth finished. The outer diameter of the female face acts to locate and retain the gasket. 
Advantages:
Better sealing properties, more precise location and exact compression of sealing material, utilization of other, more suitable sealing and specialized sealing material.
Disadvantages:
Normal raised faced is far more common and ready available both regarding Valves, flanges and sealing material. Another complexity is that some rigid rules must be applied to the piping design. 

Posted: 2014-06-10 10:01:16 
Post URL: http://www.landeeflange.com/common-types-of-pipeline-flange-faces.html

New depth-independent, high resolution subsea pipeline inspection tool released


New depth-independent, high resolution subsea pipeline inspection tool released

Matthew Kennedy - AGR Integrity UK
Nick Terdre - Contributing Editor
External scanning of pipelines traditionally is undertaken by divers who require support vessels. AGR Group’s Neptune system, however, provides inspection without diver intervention and associated availability issues and depth limitations.
Neptune combines an external state-of- the-art ultrasound scanner with a small ROV. The system can be mobilized anywhere in the world to examine and predict the remaining life of subsea tubulars. The system delivers high-resolution ultrasonic data in real time, which is used to underpin the detailed finite element analysis (FEA) calculations used in industry-standard, fitness-for-service (FFS) determinations.
The neutral buoyant Neptune system, weighing 150 kg (331 lb) in air but neutrally buoyant in water, is deployed via an inspection class ROV to the work site. The scanner comprises a hydraulically opening and closing twin collar, 600-mm (23.6-in) wide construction containing a fully automated X-Y scanner. This clamshell construction is self-aligning to allow rapid installation by the ROV.
Self-centering rams within the clamshell hold the scanner firmly on the pipe, creating a stable platform for the X-Y probe carriage. The probe carriage has an axial range of 500 mm (20 in.) and a circumferential movement of over 360º. It is configured to deploy Time of Flight Diffraction (TOFD) transducers for volumetric weld inspection, and compression wave transducers to perform color graphic material mapping.
The historic restriction of analogue data transmission has been removed by locating the AGR Technology Design ultrasonic digital flaw detector on the Neptune scanner. This allows the inspection data to be digitized and processed at the subsea worksite, then sent through the ROV umbilical to be viewed in real time on the surface.
Currently, the Neptune system is configured to operate in water depths of up to 1,000 m (3,280 ft), but this could be extended. The system’s ultimate working or depth range is equivalent to the ROV umbilical length: some ROVs today operate to a range of 6,000 m (19,685 ft).
The ROV pilot and Neptune operator sit together during operations to ensure optimum operational interface. The objective of any examination performed with the Neptune system is to obtain high quality graphical images of parent material, welds, and adjacent HAZ material.
As the probe carriage rasters around the pipe, the data is stored and viewed in real time for both mapping and weld inspection. In TOFD mode, the two transducers straddle the weld at a pre-set standoff to allow volumetric imaging of the weld in one pass.
There are a multitude of ROVs in service around the world, hence the importance of being able to interface mechanically and electronically with any type of inspection class ROV. The size and weight of the self-contained Neptune system allow deployment from, small supply vessels or fixed offshore installations to monitor risers and caissons.
The system also can check pipeline areas following subsea impact, anomaly verification and quantification following IP runs, and to assess potential hot-tap locations. In its current configuration the double-collar scanner is ideal to examine straight pipe and upstream and downstream of bends.
The examination is performed on production pipelines from the external surface. The cleaner the surface, the higher quality the resulting images. Thanks to an existing range of cleaning, excavation, and dredging options, some residing within the AGR group, each proposed inspection site can be addressed individually to optimize the data quality.
Gaining direct access to the pipeline wall may be difficult if the line is concrete-coated, buried, or rock-dumped. In such cases, internal inspection techniques may offer a more cost-effective solution, which AGR again can address via its suite of inspection tools.
Neptune’s current inspection diameter range is 12-18-in. (30-46 cm), with plans to build both smaller and larger diameter collars deploying the same techniques. There are further plans to use the system’s scanner as a platform for other techniques such as ACFM, eddy current, and phased array.
AGR embarked on the development of this technology in the mid 1990s aiming to inspect pipelines not designed for pigging. There are a number of reasons why such services may be required. Many non-piggable lines have reached the limit of their design life, so their integrity needs to be demonstrated if they are to remain in operation.
Again, operators in general are giving greater priority to ensuring the integrity of their pipelines, of any age. Production downtime resulting from loss of a pipeline due to corrosion or a defective weld more than outweighs the cost of regular inspection. And operators also find themselves facing more stringent regulations as authorities seek to avoid environmental damage from pipeline leaks.
Crack detection
Demand has grown for internal and external inspection of pipelines and welds the past year. Last fall, AGR introduced Claycutter X, a technology to excavate the sea bottom and to remove soil from old pipelines. AGR plans to provide the Neptune Subsea Inspection system and Claycutter X as a package to combine excavation, examination, and recovering.
Another development is the WeldScan tool, which the AGR PipeTech division says it aims to promote in the Gulf of Mexico and West Africa. To date the system has been applied only in the Norwegian sector of the North Sea.
Like its predecessor PipeScan, WeldScan is equipped with ultrasonics to measure wall thickness and to detect weld defects. However, using TOFD takes accuracy to new levels, capable of detecting cracks in welds of less than a millimeter for both width and depth. In other words, cracks can be identified much earlier.
This meets the needs of increasing application of exotic and high-grade steels in pipelines and risers to cope with multiphase flows and corrosive wellstreams. These materials are often difficult to weld, so regular monitoring of welds is required.
The move into deeper waters also places a premium on reliable integrity monitoring techniques, i.e. for inspecting steel catenary risers which are exposed to severe loadings.
WeldScan has proved its worth in examining pipelines made of high-grade steel – in this case 13% chrome – in a number of assignments carried out for an operator in the Norwegian sector.
AGR also has developed a method to transport its inspection tools through the pipeline. This is self-propelled pig, known as PipeIntruder, incorporates a seal disc with an internal bypass. Water is pushed through the seal disc by a pump at the front, creating back-pressure to push the tool forward. Pumping can be reversed, sending the tool backwards.
An odometer wheel tracks PipeIntruder’s position in the pipeline. The tool also has axial and circumferential motors to position WeldScan alongside a weld with ±1mm (0.04 in.) axial accuracy. Video cameras monitor this operation. Data from WeldScan is transmitted to the surface via fiber-optic cable in real time.
The PipeIntruder is available for pipe diameters from 8-30 in. (20.3-76.2 cm). Above 30 in. (76 cm), electro-hydraulic tractors are available. The pig hauls all combinations of inspection tools, and can travel up to 10 km (6.2 mi), the maximum range of the umbilical winch.
The string made up of the PipeIntruder and inspection tools is inserted into the pipeline at the host platform. The tools can be used to inspect other tubular structures such as risers, J-tubes, and loading lines.
04/01/2008




Designing large-diameter pipelines for deepwater installation


Designing large-diameter pipelines for deepwater installation

Upcoming South Stream project in Black Sea calls for 560 mi of 32-in. pipe in depths to 7,200 ft 
Martijn van Driel
Alex Mayants
Intecsea BV
Alexey Serebryakov
OAO Gazprom
Andrey Sergienko
OAO Giprospetsgaz
Gazprom has successfully realized some of the world's largest offshore gas transportation systems, with pipelines in the 24-in. (61-cm) diameter range traversing water depths of more than 2,100 m (6,889 ft) with the Blue Stream I and II projects.
Now, with South Stream, project planners are considering the challenges of installing 32-in. (81-cm) diameter pipeline in depths that will exceed 2,200 m (7,200 ft). The 900-km (560-mi) pipeline will extend from the Russian coast to a western landfall on either the Bulgarian or Romanian coastline. Some of the key challenges include:
  •      Water depths exceeding 2,200 m (7,200 ft)
  •      Relatively large pipeline diameter for given water depth
  •      Difficult seabed conditions with steep slopes and geohazards
  •      Potentially aggressive/corrosive subsea environments.
The complexity of an offshore pipeline typically is expressed in terms of the water depth and diameter. While these are not the only drivers for a project's complexity, this expression does provide a good insight in the position of a project in relation to the current status of the industry.
While a 24-in. pipeline in 2,150 m (7,053 ft) as installed for Blue Stream in 2003 was a major challenge at the time, that project did lead to the development of technology that is now considered proven, and similar projects have been realized in various regions in the world. With projects like South Stream, the industry is now exploring a new frontier and preparing for the next step.
Seabed conditions
Pipelines across the Black Sea need to traverse a deep abyssal plain bordered by steep and sometimes rugged continental slopes. While the deepwater of the abyssal plain leads to a high external pressure, which is important for the wall thickness requirement, the continental slope crossings also can be challenging, often with high risk of pipeline spanning and geohazards.
Offshore section of the South Stream project.

In deepwater, the current and wave effects are limited, causing little dynamic loading. Allowable pipeline spans are typically longer than in shallow water and governed by local buckling criteria. Excessive spans can be corrected either by shoulder shaving, support placements, or combination thereof; the tooling for both seabed intervention methods has been developed and is available.
Geohazards are defined as features of the natural seabed that threaten the integrity of submarine pipeline systems. Such features include submarine channels, faulting, unstable slopes, landslides, mud volcanoes, seabed hydrates, pockmarks, debris, and turbidity flows.
Historically, the risk posed by such features has been eliminated often simply by routing around them. However, for pipelines crossing a continental slope into deepwater, it becomes less likely that all such potential hazards can be avoided. Hence, engineering solutions must take into account the underlying geological and/or sediment movement processes.
Geohazards can lead to significant loads on or displacements of a pipeline. In the Black Sea, the most relevant geohazards include:
  •      Faults
  •      Unstable slopes resulting in slumps or slides
  •      Mudflows / mass gravity flows
  •      Earthquake or wave induced liquefaction in the shore approach area
  •      Mud volcanoes
  •      Gas-expulsion features.
All of the above features have been identified in the project area, and need to be addressed through rigorous survey and engineering. Earthquake-induced slope stability and mass gravity flows could pose a significant risk to the integrity of the pipeline at the Russian continental slope, and a similar situation exists for the western continental margin. An extensive feasibility survey has been performed to identify these risks and to develop preliminary route options. To further quantify these risks, it is important to perform a comprehensive design survey campaign to capture and analyze these geohazards. This can save a significant amount of time/costs on subsequent detailed surveys, studies, and construction.
It is one of the best-known Black Sea properties: deeper than approximately 150 to 200 m (490 to 656 ft), Black Sea water does not contain oxygen, but does contain dissolved sulfuric hydride. Water mixing (driven by currents and waves) is needed for the oxygen captured from air and generated by algae at the sea surface to reach lower layers of the sea. In the Black Sea, there is extremely little vertical water mixing, resulting in the world's largest stratified water body.
For the Blue Stream project, the environment of the Black Sea was classified as sour (or “H2S containing”) based on extensive measurement campaigns and supported by historical research data that showed accelerated corrosion rates in parts of the Black Sea environment. The likely cause of the corrosion was identified as a combination of H2S and sulphate reducing bacteria (SRB). Detailed water and soil tests are being performed for the South Stream project to establish the chemistry of the Black Sea environment over the vertical water column, as well as the top soil to a depth of 4 to 6 m (13 to 19.7 ft) below the seabed surface.
Contrary to normal sour service pipelines in which sour medium is introduced inside of the pipe, the Black Sea environment may cause H2S exposure to the outer surface of the pipe. This service condition applies over the system lifetime. It is difficult to quantify, since it depends on highly localized soil conditions and pipe/soil/water chemical interactions over the complete length and lifetime of the system. When present, high H2S concentration is typically found at a depth of 2 to 4 m (6.5 to 13 ft) below the seabed. Its effects on the pipe steel and welds are being investigated.
Since there are no concepts readily available to mitigate an external H2S-containing environment after pipeline operation, it is essential to correctly assess the associated risks and costs. For South Stream, this issue is being investigated in detail through an extensive geochemical survey and analysis program, as well as a detailed material testing and development program.
Hydraulic performance
For a project like South Stream, the investment involved is considerable and the ability to transport significantly more gas at limited additional cost improves the commercial performance of the project. Hence, an increase in diameter has significant benefits for the project economics, enabling more gas to be transported over longer distances. As part of project analysis, planners have examined the typical relationship between inlet pressure and outside diameter for different throughputs for a 900-km (560-mi) pipeline. The research showed that a diameter increase from 24 to 32-in. allows twice the volume of gas to be transported. While the friction loss increases exponentially for smaller diameters, it also increases with the higher velocities required to transport the same volume through a smaller pipe. While this figure only relates to a typical pipeline length, the same considerations apply for shorter distance pipelines, justifying the desire to implement larger diameter pipelines for deep water application. For inlet pressure requirements up to 30 MPa (4,350 psi), the application of existing and field proven technologies is available. No technology gap is foreseen.
For pipelines as long as South Stream, the minimum allowable arrival temperature requirement can become the governing factor rather than the pressure loss. The gas cools when ascending the continental slope and passing through the buried shore approach section on the receiving end. Good knowledge of pipeline settlement (and therefore soil conditions) and concrete coating becomes important to accurately predict the hydraulic performance of the system. In case that the in-situ sediment at the downstream shore approach is found to be susceptible to frost heave, it would be wise to consider engineered backfill.
The parameter that strongly influences the system's thermo-hydraulic performance is the embedment on the continental shelf at the receiving end. Overall, embedment in the soft, often liquid clay of the Black Sea can easily be 50 to 100% or more of the diameter. Thermo-hydraulic performance is verified against existing operational information to provide additional certainty; given the importance of pipe burial, the hydraulic analyses will be revisited after geotechnical survey results are obtained and pipe burial has been calculated.
Another parameter influencing the receiving temperature is the application of concrete coating. Concrete coating provides a thermal insulation in comparison to an uncoated pipe. One option being considered is to continue the deepwater wall thickness up to the receiving landfall, thereby reducing the extent of concrete coated pipe. While this would most likely result in a higher capex, the overall throughput capacity could be improved.
Steel grade selection
It is generally practical to apply the highest possible line pipe grade to minimize the wall thickness, weight, and cost of the pipeline. For deepwater offshore applications, DNV SAWL 450 has been used in numerous sour and non-sour conditions. DNV SAWL 485 grade has been produced almost exclusively for non-sour service, although recent developments and trials in sour service conditions have been initiated for small-diameter pipelines. Nevertheless, additional qualifications for H2S-resistant application are required to ensure the performance of DNV SAWL 485.
Full-scale collapse test rig.

Installability
The combination of pipeline diameter and maximum water depth for South Stream exceeds that previously achieved in the worldwide pipeline industry. The first issue to be addressed in terms of overall construction feasibility is, therefore, the ability to install the selected pipeline dimensions in the deepwater segment of the route.
Furthermore, the significant route length introduces additional challenges to maximize installation efficiency. Installation of the pipeline will require extension of the existing global pipelay installation capacity. In doing so, the success factors and experiences from previous record-setting pipeline projects such as Blue Stream and Nord Stream must be evaluated and applied where appropriate.
The feasibility of the installation of the deepwater section of the route governs the overall system construction feasibility. As part of this process, the capabilities of the existing deepwater pipeline installation vessels are being assessed against the deepwater installation requirements on this project. The three existing deepwater pipeline installation vessels usually considered suitable for a project like South Stream are the Saipem S7000, Allseas Solitaire, and HMC Balder. Furthermore, the deepwater installation capacity will increase in the future if several newbuild vessels are completed on schedule. These include the Saipem FDS-2 and Castorone; the Allseas Pieter Schelte, and a new vessel being developed by Hereema Marine Contractors (HMC). In general, it has been concluded that installation is feasible using the existing deepwater installation vessel fleet. However, the assessment of the existing three deepwater pipeline installation vessels shows that all three vessels will require some modifications/upgrades to install the South Stream system safely and efficiently.
Wall thickness
Core to the capability to develop large diameter projects in deepwater is the wall thickness design in combination with the manufacturability of the linepipe.
Full-scale collapse test pipe.

For the pipe diameter and wall thickness under discussion, only two pipe manufacturing processes are feasible: JCOE and UOE.
In the JCOE process, the plate is formed to a J-shape using a pressed module, step-by-step at a fixed width interval. Then using a similar method, the plate is formed to a C-shape until it obtains an O-shape. The pipe is subjected to cold expansion after tack weld and submerged arc welded at the inside and outside parts.
The UOE process consists of forming the plate into U-shape and O-shape using a pressed module, followed by tack weld and longitudinal weld of the pipe. As opposed to the JCOE process, both the U-shape and O-shape are obtained using one-step forming. Thereafter the pipe is cold expanded to obtain the required dimension. For both pipe manufacturing methods, the current DNV code formulation results in a reduction of the compressive strength after the manufacturing process, with 15% compared with tensile strength.
The wall thickness required for South Stream is at the limit of the leading mills' capability. One limitation for some mills is the capacity of the pipe-forming process (such as the capacity of the O-press). While this restriction may be avoided through a considerable investment in upgrade of the mill, the control of pipe properties in the weld area for such thick-walled pipes remains a major issue (in particular parameters such as ductility and toughness). For deepwater application, these pipe properties are critical to the pipe performance. Achieving the desired material parameters for the wall thickness required using standard calculation methods is on the edge of what can be produced. A small reduction in wall thickness can result in a major improvement in manufacturability, and thereby drive the actual feasibility of the project for a specific throughput and OD combination.
For the deepwater section of the pipeline, the design is governed by the local buckling criterion. This condition occurs during installation at the pipeline sagbend where the pipeline will experience the most extreme combination of external pressure and bending. In the calculation of the required wall thickness for this design limit state, the following critical technological advances can be applied:
  •      Recovery of collapse resistance through thermal aging
  •      Tighter dimensional control on line pipe manufacture
  •      Tight control on bending strain during installation
  •      A partly displacement-controlled condition is applied in the design for the sagbend.
The largest contribution to wall thickness optimization is from the recovery of collapse resistance through thermal aging. Pipe collapse resistance is linked to the pipe hoop compressive strength. Many studies including small-scale and full-scale tests have been performed in the past 20 years (for example Oman-India, Blue Stream, and Mardi Gras), evidencing that a significant recovery in collapse strength can be gained for DNV SAWL 450 steel (in the order of 30%). In fact, test results suggest the collapse resistance is recovered even beyond the original value.
Using the current DNV F101 formulation, most mills, nowadays, indicate that they are able to produce pipe with a significantly improved fabrication factor, incorporating strength recovery through thermal aging. Thermal aging effect is the ability of steel to recover its strength due to strain aging. It is possible to take advantage of thermal aging through application of external coating, which usually takes place at the same temperature range as where the thermal aging process occurs.
For a deepwater, large-diameter pipeline such as South Stream, using a thinner wall without compromising system reliability is desirable not only for the obvious economics in steel saving but also out of necessity, as blind compliance to the current international design codes would result in a wall thickness that is beyond manufacturability.
To give the owner, designer, and manufacturer sufficient confidence, Gazprom has commissioned a full testing program, which is currently ongoing. This testing program includes full scale testing of as-received and thermally treated pipe joints, subjected to combined loading of external pressure and bending.
Deepwater repair contingencies
In the past, even though the probability of failure of a properly planned deepwater pipeline is small, the risk associated has been a concern because of the difficulties in making repairs. While the effort required remains considerable, current deepwater technology provides the tooling that allows repairs large-diameter, deepwater pipelines. Even within the region, repair systems are available for the water depth (Blue Stream) or diameter (Green Stream) under discussion. To combine these into a new application is relatively straightforward, with little technology gap.
Conclusions
A 24-in. pipeline in 2,150-m water depth or 32-in. pipelines in 1,400-m water depth are accepted by the offshore industry as proven technologies. The South Stream project is now investigating the feasibility of using larger diameters (such as 32-in.) in 2,200-m-plus water depths, and its successful construction will be another step-change for the offshore industry. The use of a larger diameter will provide obvious benefits for the project economics, allowing a considerably higher throughput; but this requires an advance application of existing technologies.
For the present installation fleet, the installability of such a pipeline is complex but not governing. This capability will be further improved if the currently scheduled deepwater installation vessels are completed on schedule. Still, rigorous design is essential, regardless of the selected diameter.
Key to the success of such projects is the manufacturability of the line pipe with the requisite wall thickness. The wall thickness required for large-diameter pipelines is on the edge of leading mills' capabilities. Several technology advances need to be applied to achieve feasibility, and a rigorous development program is ongoing for successful implementation.
Acknowledgment
Based on a paper presented at the Deep Offshore Technology International Conference and Exhibition held on Nov. 30-Dec. 2, 2010, in Amsterdam.
08/01/2011
http://www.offshore-mag.com/articles/print/volume-71/issue-8/flowlines-__pipelines/designing-large-diameter-pipelines-for-deepwater-installation.html